Black Holes 1 Rev 3

One implication of the article Circular Gravitational Fields is that Special Relativity
does not support the concept of “black holes‘. For many years, theories on black holes
have been popular in astrophysics. A poorly calculated Schwarzschild Metric 1s the
starting point for these theories. The errors in the Schwarzschild Metric responsible for
black holes will be shown, as well as the correct form of the equation.

Any solution to the General Theory of Relativity is a difficult problem. However, the
thought experiment examined by the Schwarzschild Solution [1] is not a difficult problem
to solve in Special Relativity. The Schwarzschild Metric is just the invariant interval for
a single, non-rotating planet in an otherwise empty universe. Schwarzschild used a polar
coordinate system for his paper and his original coordinate system is given in Figure 12.

Figure 12

In Figure 12, a large mass M is shown with another mass m at position r. Mass m 1s so
small that it has a negligible effect on the gravitational field of M.

PROBLEM STATEMENT

It is desired to find the invariant interval of the space surrounding M. The invariant

interval 95 is formed from four position coordinates (including time as a coordinate)
describing the location of events in either the linear or polar coordinate systems.
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In (45), ¢ is the speed of light. For reference, the Schwarzschild Metric commonly cited
in current tests, such as Antoci [2], 1s:
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To go from (45b) to (46), a massless framework is constructed around mass M. This
framework has radial and circumferential members simulating the polar coordinate
system of Figure 12. Observers from M carry meter sticks out onto this framework and
carefully mark off identical intervals throughout the entire structure. Identical clocks are
also placed at regular intervals along the structure.

At a location approximating ¥ = % , mass m is located. Mass m has its own framework,
marked off with clocks and meter sticks identical to the ones used for mass M. The form
of the m framework is that of a purely inertial system, but this framework only extends a
short distance surrounding m. The M and m observers will note that the intervals on each
framework are identical when m is at this far away location. They also note that the
clocks on each framework proceed at the same rate.
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In a universe with only one significant mass M, the gravitational field extends forever in
all directions. There is no actual point ¥ =% but only a very large value of r where (47)
is reasonably accurate. Now, a rather long period of time passes and mass m eventually
falls toward M due to the gravitational attraction. At a point where m has a significant
velocity Vv, the observers on each framework can once again make their measurements.
The m observers have noted that they are still an inertial reference frame and conclude
nothing has occurred to modify the m framework. However, the m observers note that
the M intervals that they measure are now shorter and the M clocks appear to be running
slow. These results can be incorporated into (47), yielding:
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Assume the m observers don’t know about M. They might conclude that the passing M
framework is moving for a number of possible reasons. For example, there might be a
rocket attached to it, or it might be one mass in a system that is exchanging momentum
with other masses. Equation (48) is a general equation describing the invariant interval of
any framework which acquires a velocity in the r direction relative to m. In this case, the
cause of the velocity V is a gravitational field and this velocity 1s a function of r.

AN APPROXIMATE VELOCITY EQUATION

Newton’s Laws are used to determine the velocity equation for use in (48) by calculating
the escape velocity of an object leaving a massive planet.

dP

) - S
dt (49)

P = momentum of an object = 7V
GMm

F = force on the object= 7~

G = gravitational constant
M = mass of planet
m = mass of escaping object

r = radius of m from center of M = R+ X
V = velocity of object

The radius r will be divided into two segments: R is a specified radius (for example, the
radius of the surface of M) and x is the object distance above R. The object m starts at R
and is shot upwards (x direction away from M). The resulting equation for the position of

the object 1s:
( dv J[ dx ] — GMm
171 —
dx J\ drt ()C - R)z (50)

Using the initial condition that the object velocity is Yo at position * =0 defines the
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integration constant and gives the equation for object velocity as a function of position x.
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Noting that V = 0 at position X = gives the equation for escape velocity Voo

_— \/2GM
o€ R (52)

The escape velocity is also the velocity that mass m would reach if it fell from * =% to
x=0_ If (51) is specified to be the velocity profile of mass m as it falls from 7 =% (if

Yo is chosen to be equal to Voe ), then (51) becomes:

o _ 2GM
3 (53)
If (53) is inserted into (48), the Schwarzschild Metric (46) is the result. The idea of a
» _ 2GM
black hole comes from the condition © — R and ¢ . Under this condition, the

invariant interval is no longer invariant. The Schwarzschild Radius Ks 1S a point of
mathematical singularity and the behavior of the laws of physics becomes unclear at this

location.

A BETTER VELOCITY EQUATION

Notice that the equations for velocity above are derived from Newtonian expressions for
momentum and gravity (49). The Schwarzschild Metric (46) turns out to be a
combination of relativistic and Newtonian components. A better metric would result by
using a relativistic expressions for momentum and gravity.
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Noting ’ ~ Vo¢ at position X = 0 oives the equation for escape velocity Voe
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The escape velocity from By is 0.795¢. Including relativity into the velocity expression
for a falling object eliminates the singularity which results in the concept of ‘black hole.’

THE EXACT VELOCITY EQUATION

As has been shown in the article Gravity and Energy, an object falling within a spherical
gravitational field gains energy exponentially. Using (34), the momentum P of this object
changes as its kinetic energy KE changes and the kinetic energy change is equal to the
potential energy change (Wap per previous discussions) within the gravity field.
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0 = Initial radius from which mass m (frame A) starts falling
¥ = Final radius of mass m as it falls

P = [m 4 Kf )v = m[] + W‘{i ]v = mcﬂexp(g)
(57)
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Combining the above two equations gives:
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; Poc is the escape velocity and
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As before, R is the radius of the planet of mass M. For the case where R=0, Po. =1 :

_2GM
For the case . AZ j Po. =0.795

the Schwarzschild Radius. An object of mass m would need kinetic energy 0.6485mc”
to reach the escape velocity. This would also be the kinetic energy that the object would
oain when falling from far away to the Schwarzschild Radius.

. It is possible for light and matter to escape from

INTERPRETING THE RESULT

The proper interpretation of (46) starts with the realization that it is an invariant interval,
a familiar tool in Special Relativity. See Figure 13, in which reference frame B is passing
reference frame A with velocity v.

As a first experiment, the planets shown in Figure 13 will be ignored. What’s left is a
simple experiment with two inertial frames. As seen by frame B, if the origins of both
frames are passing at the instant shown, coordinate L on the frame A axis will be in a
length contracted position compared to the same coordinate in frame B. A gap results
between the coordinates. The closer v gets to ¢, the closer the frame A coordinate L gets
to the frame A origin. When v equals c, all frame A coordinates are contracted to the
origin. In addition, frame B observes that all frame A clocks have stopped.

In inertial experiments, an observer standing at the origin of frame B cannot directly







